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WAVELETS BASED ON ORTHOGONAL POLYNOMIALS 

BERND FISCHER AND JURGEN PRESTIN 

ABSTRACT. We present a unified approach for the construction of polynomial 
wavelets. Our main tool is orthogonal polynomials. With the help of their 
properties we devise schemes for the construction of time localized polynomial 
bases on bounded and unbounded subsets of the real line. Several examples 
illustrate the new approach. 

1. INTRODUCTION 

In this paper we introduce and discuss a new method for the construction of time 
localized bases for polynomial subspaces of an L2-space with arbitrary weight. Our 
analysis is based upon the theory of orthogonal polynomials. Whereas the frequency 
localization will be predetermined by the choice of the polynomial spaces, the time 
localization will be realized by the choice of special basis functions. More precisely, 
such a basis function will be defined as the solution of a constrained approximation 
problem which is designed such that its solution is maximally localized around a 
specified point. 

Starting with the paper of Chui and Mhaskar [2], discussing trigonometric poly- 
nomial multiresolution analysis, the theory has been adapted to the algebraic poly- 
nomial case, see, e.g. Kilgore, Prestin [6] and Tasche [10]. They investigated the 
special case of the Chebyshev weight of the first kind. Their analysis is based on 
the properties of ordinary Chebyshev polynomials and does not carry over to other 
weight functions. In contrast, our derivations make use of the general theory of 
kernel polynomials. This allows us to treat not only weight functions which are 
supported on a compact interval (e.g., Jacobi weights) but also weight functions 
which are supported on the real line (e.g., Hermite weight) or on the real half line 
(e.g., Laguerre weight). Moreover, we relate our approach to the classical concept 
of multiresolution analysis due to Mallat and Meyer. 

The paper is organized as follows. In Section 2 we collect some basic properties 
of orthogonal polynomials. Besides more theoretical results we discuss in particular 
computational aspects of orthogonal polynomials. Then we define scaling functions 
and wavelets and investigate some of their properties. This includes questions con- 
cerning orthogonality, interpolatory properties, time localization, and the construc- 
tion of dual functions. In Section 3 we discuss the algorithms for reconstruction 
and decomposition. Because all participating spaces are of finite dimension, it is 
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straightforward to devise a compact matrix formulation for these schemes. Sec- 
tion 4 is concerned with a comparison to the ordinary multiresolution analysis and 
in particular with questions related to the Riesz stability and to the (generalized) 
translation invariance of the proposed basis functions. Finally in Section 5 we apply 
the new approach to two different Chebyshev weights. 

2. SCALING FUNCTIONS AND WAVELETS 

After having collected some auxiliary results for orthogonal polynomials, we will 
define in this section scaling functions and wavelets with respect to arbitrary weight 
functions. 

2.1. Orthogonal polynomials. Let da(t) be a nonnegative measure on the real 
line, with compact or infinite support [a, b], -oc < a < b < 0o, for which all 
moments 

fb 

(2.1) hr =1 trd(t) r = 0 1,... 

exist and are finite with vo > 0. With da(t) there is associated an inner product 
and a norm 

fb 

(2.2) (p,q) p(t)q(t)du(t), 1PI H= APP) 

on the vector space of all polynomials. It is well-known (see, for example Szegb [8, 
?2.2]) that there exists a unique system of polynomials that are orthonormal with 
respect to this inner product, i.e., a set of polynomials {Pr} such that 

(2.3) (Pk, Pl) = 6kl- 

In general the system {Pr} consists of infinitely many polynomials, but reduces to 
a finite number, if c(t) has only finitely many points of increase. Throughout this 
paper we assume that c(t) has at least 2n + 1 points of increase and consequently 

{Pr}rn2o forms a basis for V2n, where 

(2.4) Vn := span{Po,Pl,... ,Pn}- 

An important special case are distributions of the form w(t)dt. Here we assume 

that the weight function w(t) is nonnegative with fb w(t)dt > 0. 
The orthogonal polynomials Pk fulfill the following three-term recurrence relation 

P_ (t) := 0, Po(t) = -1/2 

(2.5) bk+lPk(t) = (t-ak)Pk- (t) -bkPk-2(t), k > 1. 

Let us collect together the three-term recurrence coefficients of {Pr}~r=O into an 
unreduced symmetric tridiagonal matrix Jn, the so-called Jacobi matrix, 

(a, b2 0 ... 

b2 a2 *- 

(2.6) n = * . 

K . 
0. 0 

. 
b bn 

0O .. 0 bn ant 
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With the vector 

(2.7) V n(t) :=(PO (t) I Pi (t), * -, Pn (t))f 

we can rewrite the three-term recurrence relation of the orthonormal polynomials 
(2.5) in compact matrix notation as 

(2.8) tvn1l(t) = Jnvn1l(t) + bn+lPn(t)en 

where en := (0, 0,... , 0, 1) r denotes the nth unit vector. 
The next lemma collects some properties of the zeros of orthogonal polynomials. 

A proof of parts (a) and (b) may be found in Szeg6 [8, Theorem 3.3.1, 3.3.2], 
whereas (c) follows directly from (2.8). 

Lemma 2.1. Letyrn), r = 0,1,... ,n - 1, denote the zeros of Pn. 
(a) The zeros of Pn are all real, simple and are located in (a, b) 

a (n) < (n) < ..< y(n) <b 

(b) The zeros of Pn and Pn+1 separate each other 

YO < Y( < y( < ..< pYn-1 < Y~n~ 

(c) Any zero yrn) of Pn is an eigenvalue of Jn with eigenvector Vn-j(Yr)- 

For a given fixed number ( E R the polynomial 
n 

(2.9) Kn(t;) Z Pk(t)PkQ/) 

k=O 

is called the kernel polynomial with respect to (,.) (and the parameter (). Note 
that 

n 

(2.10) Kn(;() = ZPk ()2 > 0. 
k=O 

The name "kernel" is motivated by the following result, which is also known as the 
reproducing property of the kernel polynomials (see, e.g., Davis [3, ?10.1]), 

fb 

(2.11) (Kn(; ),P) = j Kn(t; ()p(t)du(t) = p((), for all p E Vn. 

The nth kernel polynomial Kn (t; () is the unique solution of the following con- 
strained approximation problem (cf. Szeg6 [8, Theorem 3.1.3]) 

(2.12) Kn min flP1l: PEVn, P(()= I 

2.2. Scaling functions. Equation (2.12) indicates that the kernel polynomials are 
localized around (. Motivated by this property we define scaling functions as kernel 
polynomials 

(2.13) (n1nr(t) = pn(t;x$r+1)) Kn (I;xrn+ 1)) r =0, 1,... , n, 

with respect to a suitable set of parameter 

(2.14) X(n+ 1) < X (n+ 1) < ..< x(n+1) 

The next figure displays some typical scaling functions. Note, that we plotted in 
(a) and (b) the "plain" polynomials and in (c) and (d) the polynomials times the 
underlying weight function. Actually one may view the scaling functions on the 
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FIGURE 2.2. Various scaling functions of degree n = 32. (a) 
Legendre weight: w(t) = 1; p32(t; 0, 5); (b) Jacobi weight: 
w(t) (1 - t)-0-5(1 + t)-L08;(p32(t;0.5); (c) Laguerre weight: 
w(t) t1/2 exp(-t); p32(t; 1) w(t); (d) Hermite weight: w(t) 
exp(-t2); (p32(t; 1) * w(t). 

one hand as polynomial basis functions in a weighted L2-space and on the other 
hand as weighted polynomial basis functions in an unweighted L2-space. 

Some properties of these polynomial scaling functions are summarized in the 
next theorem. 

Theorem 2.3. Let vn.r(t) = ?n (t; XrV1) denote the scaling functions with respect 
to a given set of parameter xOn+1) (n+1) < x* < (n+1) 

(a) The inner product of scaling functions may be evaluated as follows: 

((Pnr,r (Pn~s) = (Pnx (Xs ))+) r, s = O. 1, ... ., n. 

(b) The scaling function (Pn.r is localized around x $n+l). More precisely, we have 

(+n1r min {PIH : p E Vn: P(Xn+l)) 1}. 

(c) The (Pnxr 's form a basis for Vn, i.e., 

-n = span{(pn,vOn. 1,.** (Pn.n. 
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(d) The scaling function (Pnr is orthogonal with respect to the "modified inner 
product" K,. ( r -xn+1))) 

(pn, r () q( )( -On+))) = 0 for all q E Vn1. 

(e) The scaling function (Pn,r satisfies the so-called Christoffel - Darboux identity 

Pnr (t)= bn+2 'Pn+l(t)Pn(xr )) - Pn(t)Pn+ 1 (X$r~) 
- =njn+1) 

where bn+2 is a three-term recurrence coefficient of Pn+l (cf. (2.5)). 
(f) Let Jyk MO and {n+l )}k=0 denote the zeros of Pn and Pn+1, respectively. 

Moreover, define y7(n) -oo and p(n) oo 

If xrn) = yjn) is a zero of Pn, then (Pn,r has the n-I zeros yk k = 
0,1,1... ,j - ,j + 1... In -1. 
If X n+1) = p(n+1) is a zero of Pn+i, then Wvn,r has the n zeros y(n+ 1) k = 
0X1XI... Xj ij-1 + 1, ... In. 
If X7n+ 1) E (n n+1), y(n) ),then Pnr has precisely one zero in each interval 

(y (n+ 1) ly(n) ) k = O.1, .. ., j-1 j + 1, . .. In. 
If XVn+l) E ((nl)l X(n+l)) then Wvn,r has precisely one zero in each interval 

(y (n) Y(n+ 1) ) k= O.1,. . .. jj 1, j .. In 

Proof. Parts (a) and (b) follow immediately from (2.11) and (2.12), respectively. 
To verify (c), assume that 

n 

(2.15) E Trn, r (t) -0. 
r=O 

Furthermore, let {4 }rn%0 denote the set of fundamental polynomials of Lagrange 
interpolation with respect to the knots (2.14), i.e., 

(2.16) fr E Vn and fr(Xsn+l)) = 6rsi r, s = 0 1, ... , n. 

In view of the assumption (2.15) and the reproducing property (2.11) we deduce 
n n 

0 = KZTr(Pnsr~es) = ETres(X $f+1)) = Ts, 
r=O r=O 

for s = 0, 1, . . . , n, which shows the linear independence of the ,vn,r's. 
(d) is nothing but the reproducing property (2.11) applied to the polynomial 

p(t) = (t - )q(t) 
(e) follows readily from the three-term recurrence relation (2.5) (compare 

Szegb [8, Theorem 3.2.2]. 
(f) is a direct consequence of the Christoffel - Darboux identity (e) (compare 

Fischer [4, Theorem 2.5.8]). E 

Note that the interlacing property of the zeros of orthogonal polynomials (cf. 
Lemma 2.1(b)) together with part (f) implies that the "zero-free interval" around 
the constraint point shrinks with increasing degree, as is apparent from Figure 2.4. 

Part (a) of the theorem above implies that the scaling functions (2.13) are 
orthogonal to each other if, and only if they fulfill the interpolatory property 

I(sn+l)) = d(n+ )6rs, drn+ ) E R. This may be seen as a requirement for 
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FIGURE 2.4. Scaling functions ov(t; 0.5) of degree nr 8,16,32 
with respect to the Legendre weight w(t) = 1 and the parameter 
x(n+ 1) = 0 5 

the parameter set (2.14). The next theorem characterizes the parameter sets which 
lead to orthogonal scaling functions. 

Theorem 2.5. Let vnxr(t) = O n(t; Xr$. )) denote the scaling functions with respect 

to a given parameter set x n+l) < X(n+l) < ... < X$n+l) Then the following 
conditions are equivalent to the orthogonality of the scaling functions. 

(a) The scaling functions satisfy an interpolatory condition 

,Vnr(X sn+l)) = dfn+1)6rs, for r,s = 0, 1,... ,n, 

where dr ) E R. 

(b) The parameter Xrn+l) defines a quadrature rule which is exact for polynomials 
of degree 2n, i. e., 

J (t)do(t) = S (dn+1l) p(X(n+l)), for all p V2n, 

where drnl) =n r 

(c) The polynomial qn+ (t) H r(t-X$n+]-)) is quasi-orthogonal, i.e., 

(qn+., tk) = 0, for k = 01, .. . n1. 
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(d) There exists a number T, with 

Pn+ (Xr +))+TnPn(xr +)) - for r =0, 1,.. ,n. 

Proof. For convenience we drop the superscripts, i.e., Xr = $n+l) and dr = d(n+l1) 

We first show that (b) follows from (a). To this end we assume that 
n 

d71 (yn,r(Xs) = Edr7Pk(Xr)Pk(Xs) = 6r,s, 
k=O 

and conclude 

n 

Pj(XS) = ZPl(Xr)6r,s 
r=O 

n n 

= Z P1 (Xr)Z: dr Pk (Xr) Pk (Xs) 
r=O k=O 

n n 

ZPk (xs) Z dr Pl (Xr) Pk (Xr), 
k=O r=O 

for s 0, 1, . . ., n. Hence, the polynomial 

n n 

Pi (t) - ZPk (t) d r Pi (Xr) Pk (Xr) 

k=O r=O 

has n + 1 zeros xs. For I < n this is only possible if 

n 

(2.17) Zdr PI(Xr)Pk(Xr) = 61,k, for 1, k = 0,1,.* , n. 
r=O 

On the other hand, the orthonormality of the Pj's 

b 

j PI(t)Pk(t)da(t) = 61,k, 1 k =01, ... n, 

implies that (2.17) constitutes a quadrature rule for polynomials of the form PIPk. 

Finally, observe that the product PIPk has exact degree I + k which clearly shows 

that 

V2n =span{PIPk: 1, k=0,1,... ,n}. 

The proof for the statement that (a) follows from (b) is along the same lines and 

is therefore omitted here. 

To show that (c) follows from (b) observe that 

rb n 

(qn+lItk) = ] qm+i(t)tkda(t) = Edrlqn+l (x$n+l))(Xrn+l))k = 0, 
a r=O 

for tkqn+l E V2n, i.e., for k < n - 1. 

Conversely, let P2n E V2n be given. Then there exist polynomials Pn-l E Vn-1 
and Pn E Vn with 

P2n (t) = Pn-1 (t)qn+l (t) + pn (t). 
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Now we make use of the quasi-orthogonality of q,+l, and the fact that any poly- 
nomial of degree n can be integrated by an interpolatory quadrature rule based on 
n + 1 given knots, to obtain 

rb b rb 

P2n (t)du(t) Pn-1 (t)qn+1 (t)da(t) + I Pn (t)du(t) 

rb 

(2.18) = Pn (t) du(t) 

n 

=E er p(r ) 

r=O 
n 

= e lP2n (Xrn+ 1)). 

r=0 

It remains to show that e-1 d-1X r 0 1, ... , n. This, however, follows from 
the implication (b) =: (a). 

For the rest of the proof we refer to Chihara [1, Ch. II, Theorem 5.1, 5.3]. E 

In particular part (d) of the theorem above is quite useful for actually computing 

parameters x n+1) which correspond to orthogonal scaling functions. Note, that the 
interlacing property (cf. Lemma 2.1(b)) immediately implies that the polynomial 

Pn+ 1 (t) + TnPn (t) 

has n + 1 real and simple zeros, where at most one of these zeros lies outside the 
"orthogonality interval" [a, b] (compare Chihara [1, Ch. I, Theorem 5.2]). 

Probably the most important special case is provided by the choice Tn = . 

Corollary 2.6. Let yrn+ ) r = 0,1,... ,n, denote the zeros of Pn+l and let 

Pnm,r(t) = (p7(t; Yn+1l )) denote the associated scaling functions (2.13). Then 

((Pnir (Prns) (Pnr (Y(7l+1)) - cr(?l) 6 ,s, r, s = 0, 1, ..., n, 

where the Crnhl) 's are given by the weights in the classical Gaussian quadrature rule 

lb n _1)- (+1 
Jb(t) du(t) C (n~?D> p(y(+l)), for allpGV?. 

a r=0 

We remark that the (Pn,r may be viewed as fundamental polynomials of Lagrange 

interpolation with respect to the knots yr 

2.3. Wavelets. In this section we define our wavelets and discuss some of their 
properties. To this end let 

(2.19) Wn := V2n E Vn = span {Pn+1, Pn+2,* P2n} 

Note that 

(2.20) dim Wn = n. 

The goal is to identify functions, our wavelets, which define a localized basis for 

Wn. 
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In accordance with the definition of the scaling function (2.13) we define the 
wavelets, for r = 0, 1,... , n - 1, in terms of kernel functions 

,ln,r (t) = /n (t; z$r)) K2n (t; zrn) - Kn(t; z$r) 
2n 

(2.21) = E 
k 
(t) 

k=n+1 

for a suitable set of parameter 

(2.22) z(n) < z(n) < . < Z(n) 

Note that the interlacing property implies On (Zr) > 0, for n > 1. 
The next figure shows some typical wavelets. For a plot of the corresponding 

scaling functions we refer to Figure 2.2. 
The next theorem collects some properties of the wavelets l/'n,r. Note, that 

parts (a) and (b) are similar to the one for the associated scaling functions (cf. 
Theorem 2.3). We stress that these properties do not depend on the particular 

choice of the parameter set {z$r }r=iOi. 

1 

1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/ \114l AA I 0.5 0.5 

vJ0Z ?a /7VV-- 0 - - v v 

-0.5 -0.5 

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 
(a) (b) 

0.5 

0.5- 

-0.5- 

-0.5 - 
_ _ _ _ _ _ _ _ _ _ _ _ _ 

0 2 4 -5 0 5 
(C) (d) 

FIGURE 2.7. Various wavelets of degree n = 32. (a) Le- 
gendre weight: W(t) = 1; p32(t; 0.5); (b) Jacobi weight: 
W(t) = (1 -t)-05(1 + t)-08; p32(t;0.5); (c) Laguerre weight: 
W(t) = t1/2 exp(-t); p32(t; 1) . W(t); (d) Hermite weight: w(t) = 

exp(-t2); 032(t; 1) . W(t)- 
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Theorem 2.8. Let Vbm,r(t) := 0$'(t; z$')) denote the wavelets with respect to the 
(rn) (rn) < (ni) parameter zo < z1 < ...<nz 

(a) The inner product of wavelets may be evaluated as follows 

(K4n,ri xPn, s) = 'nrm(Z (n)) r, s - O. 1 ... , n- 1. 

(b) The wavelet )/n,r is localized around zr 

?Pnr(Z ) |=-min{flpfl pE Wn, p(Z(n)) = 1}. 

(c) Let Pm,r(t) := pOn(t;Xr (cf. (2.13)) denote the scaling functions with 

respect to the parameter x (n+) < x(n+l) < ... < xnn+ ). The wavelets and 
the scaling functions are orthogonal to each other 

(Olnr i (Pn, s) = 01 r, s = O. 1, ... ., n-1 

Proof. For convenience we drop the superscript Zr Zr 

To verify (a), we show that the wavelets fulfill a reproducing property with 
respect to Wn. In fact, for p E Wn we have by (2.21) and (2.11) 

(K)n,rP) = (K2n(;Zr)-Kn (;Zr),P) 

(2.23) = (K2n(; Zr), p) - (Kn(; Zr), P) 

= P(Zr). 

(b) The proof is along the lines of the proof for the standard case of kernel polyno- 
mials (cf. Chihara [1, Ch.I, Theorem 7.3]). Let p E Wn with P(Zr) = 1, i.e., 

2n 2n 

(2.24) p(t) = E dkPk(t), P(Zr) S dkPk(Zr) 1. 
k=n+1 k=n+1 

The orthonormality of the Pj's implies 

2n 

(p, p)= E dk- 
k=n+1 

This identity together with (2.24) and the Cauchy-Schwarz inequality (applied to 
the Euclidian inner product) yields 

1 P p2(Zr) ((dn+1?dn+2,... , d2n)(Pn+1 (Zr), Pn+2(Zr),* P2n.(Zr)) 
2 

2n 

< flpfl2 5 Pk2(Zr). 

k=n+?1 

On the other hand we have 

| n~r |2 (_ n,r 'On,r) _ 1 
2 2 Pn Z) 

11 fn r(Zr)n|| Pk?2 2Zr)) E?k=n+l Pk (r 

which concludes the proof of statement (b). Part (c) follows directly from the 
definition of the participating functions. E 
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It is worth noticing that in accordance with the properties of scaling functions 
(cf. Theorem 2.3(a)) the wavelets are orthogonal if, and only if they satisfy an 
interpolatory condition 0bn,r(Z(n)) = 0, for r 7& s. We will present in Section 5 an 
example of orthogonal wavelets. In general, however, it is not clear whether there 
exist orthogonal wavelets for a given inner product. 

Moreover, not any set {Z$n)j}n- leads to linear independent wavelet functions. 
For example, let the zr$ be zeros of Ps, i.e., 

ps(Zrn)) = , r =0, 1,. ,n 1, n +1 < s <2n. 

Then the wavelets 
2n 

4n (t; Zr) = : E k(r ))k I) r = O. 1, ..., n - 1 
k=n+ l ,k~s 

can span at best a space of dimension n - 1. However, we have the following 
theorem. 

Theorem 2.9. Let z(n) = rn) r = 0 1, ... ,n - 1, denote the zeros of Pn and let 
bn,r(t) = 'On (t; Yrn)) denote the associated wavelets. Then 

Wn = span{f4n,o, On, i... nn-l}- 

Proof. We show that the {I n,r }n- are linearly independent. To this end, assume 
that 

n-1 

ZUrI/n,r(t) 0- 
r=o 

Since the Pj's are orthogonal we have 

{#i iP3 5 0 for i+j =n, 
(PnPI~j) {_ 0 for i + j < n. 

This together with the reproducing property (2.11) implies, for i = 1, 2,.. ., n, 

0 = K E arfn~r XPnPi ) 
n-1 

S E orKK2n(r; n)) -PKn(; yr)), PnPi) 
r=o 

n-I 

- E 5rKKn(.;yrn)), PnPi) 
r=o 
n-1 n-I 

- E Z r Pi (yn) KPn, PiPj) 
r=o j=0 

n-1 n-I 

- , (PnPi Pj)ErPi(r r)) 
=o .= r= 
n-1 n-1 

- 5 (PnPiP)Z UrPj(yrn) 
j=n-i r=o 
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In other words, we end up with a triangular homogeneous linear system in the 
unknown E'Li arPj(yn)). Since the entries on the main diagonal do not vanish, 
it has the unique solution 

n-1 

E rj(nr)) = 01 j = 01 11. , n. 
r=C) 

This, however, is only possible for A) = a,= ... = 0, because the vectors 

Vn-1 (ITr)) =(Pr(Y $)) P1 (y $)) , pn(Y ))), r = 0, 1,.. ., n- 1, 

are linearly independent as eigenvectors of Jn-1 (cf. Lemma 2.1(d)). E 

2.4. Dual functions. For practical purposes it is important to get a hand on the 
dual functions (Pn,r E Vn and t/)n,r E Wn. They are uniquely determined by the 
following biorthogonality relations 

(2.25) ((Pns, (Pn,r) = 6rsl r, s = 0, 1,.. ., n, 

(t/0n,si )n,r) = 6jr,sl r, s = O. 1, ... ., n - 1. 

Of course, here we have to assume that the wavelets &L/n,r constitute a basis for 
Wn. The next theorem shows that the dual functions are easy to identify. The 
proof follows directly from (2.25) and the reproducing properties (2.11) and (2.23), 
respectively. 

Theorem 2.10. Let Vn and Wn be defined as in (2.4) and (2.7), respectively. 

(a) The dual scaling functions (Pn,r = fr (cf. (2.16)) are the fundamental poly- 
nomials of Lagrange interpolation with respect to the given parameter set 

((n+l) (n+l) (n+l) 

(Pn,r E Vn and (Pn,r(XTn+1)) = 6rs r, s = 0 1, .. . , n. 

(b) Let {fnr} In- be a basis for Wn. Then the dual wavelet functions l/Jn,r E Wn 
are the fundamental polynomials of Lagrange interpolation with respect to the 

(rn) (rn) (n)i) . given parameter setz0 Xz1 X... X zn- ie., 

/0n,r e Wn and '|bn,r(Z s) =6r,s r,s=0,1,... ,n-1. 

For the actual computation of the dual functions we refer to the next section. 
We would like to point out that the dual functions as well satisfy a localization 
property with respect to a discrete measure. More precisely, it holds (compare 
Theorem 2.3(b)) 

lPnr1ln+1 = min {flPjjn+i: p e Vn, p(Xr$+l)) 

where 

n 1/2 

llpln~ :=E lp(X(n+l ) )12) 
S=() 

Analogously, we have for the wavelet space (compare Theorem 2.8(b)) 

'lbn,r =min {lpfln : P E Wn, P(Zr))- 1} 
n1 
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where 
n-1 \1/2 

P | n := tAd |p~z(n) ) l12) 

s=() 

Finally, let us mention that the dual functions are in general no kernel functions 
with respect to the set of orthonormal polynomials Pk as in (2.13) and (2.21). On 
the other hand, however, they do have a representation in terms of kernel polyno- 
mials with respect to the orthonormal polynomials defined by the corresponding 
discrete inner product. 

3. TWO-SCALE RELATIONS AND DECOMPOSITION 

The purpose of this section is to describe reconstruction and decomposition al- 
gorithms of given functions. The schemes are based on the space representation 
V2n = Vn @ Wn. Clearly, a repeated application of this step would result in a 
multiresolution of a weighted L2-space. 

3.1. Matrix notation. We start by noting that in view of (2.13) any function 

fn E Vn, represented by the vector a(n) (a(n) ...an 

n 
(3.1) fn(t) = arn) pn (t;nl )) (Po (t) I XPn (t)) An a(n)X 

r=O 

may be written in terms of the matrix 

Po(X( n?)) ... PO(X(n+1)) 

An (P 
kXr=0?1)k ,...,n pn(X~n?I)) . Pn(X(n,! 

(3.2) (Vn(xn?)), . ., vn(X(n+l))) 

Analogously, we obtain for gn e Wn, with b(n) (bon),.. ,bn$1), the repre- 
sentation 

n-1 

(3.3) gn(t) - Ebrn)4'n(t;zrn)) (Pn+i(t)) ... P2n(t))Bn b(n) 
r=O 

where 

/n- 2(Z0(n) 

... Pn+ (Z(n)) 

(3.4) Bn (Pk+n+l (Zr ))k r=OI (.. n-P .I.. 

P2n (Zon . .. P2n (zn-l 

It is the purpose of this section to study the matrices An and Bn, respectively, 
in more detail. 

Recall that by Theorem 2.3(c) the scaling functions are linearly independent, 
i. e. , 

n n n n n 
-n Z1rZpk(XVn+l))pk)0 Er Cpn (t; o )= E 7r 

k 
P(t) = E: PkZPk(t)Z E rPk(XVn+l)) 

= 
- 

r=O r=O k=O k=O r=O 
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implies ao = a, = a, = 0. We learn from the above equation that also the 
vectors v,(x(f+l)) are linearly independent, which are just the columns of An. In 
fact, A, has to be regular as coefficient matrix for the interpolation problem at the 
knots x(n+l) with respect to the space spanned by the Pj's. 

Corollary 3.11. Let x4+l) < xin+l) < . n < be given. 
(a) The matrix An is regular. 
(b) The scaling functions (Pn(t; X(n+l )) r = 0 1, ... , n, are orthogonal and inter- 

polatory (cf. Theorem 2.3(a)) if, and only if A An is a diagonal matrix.. 

In light of Corollary 2.6 it should come as no surprise that the matrix An based 
on the zeros of Pn+' is special. 

Corollary 3.12. Let Xr(n+) = Y(n+ ) r = 0, 1,... ,n, denote the zeros of Pn+i 
and let c(n+i) denote the weights of the Gaussian quadrature rule (cf. Corollary 
2.6). Then the columns of An are the eigenvectors of Jn. Moreover, 

AnAn = (Vn (Yk V))n (Yr +)))ro 

= diag ((c(n+l)-,... ,(c1n+ l))-) =:D 

and 

A-= D[-A . 

To discuss properties of Bn note that 

n-1 n-1 2n 2n n-1 

E rn (t; Zr )=E r S Pk(z ))Pk(t) S E Pk(t) E 7rPk(Z)). 
r=0 r=O k=n+1 k=n+1 r=O 

Hence, the wavelets are linear independent if, and only if the matrix Bn is regular. 
The next corollary follows from Section 2.3 and in particular from Theorem 2.9. 

Corollary 3.13. Let z(n) < z(n) < ... < z42n) be given. 
(a) The matrix Bn is not necessarily regular. 
(b) The wavelets On(t; zr )) r = 0 1, ... , n - 1, are orthogonal and interpolatory 

(cf. Theorem 2.8(a)) if, and only if B TBn is a diagonal matrix. 

In Theorem 2.9 we identified a set of parameters which leads to linear indepen- 
dent wavelets or, equivalently, to a regular Bn. 

Corollary 3.14. Letz (n) = y( , r = 0,1,... ,n -1, denote the zeros of Pn. Then 
Bn is regular. 

Proof. For later reference we offer a proof which is different from the one of The- 
orem 2.9. It provides a convenient expression for B-'. Namely, a straightforward 
computation shows that 

BnAn-1 = BnD7-1 An- 

(n-1 ) 

(3.) = EC)Pk+n+l 
1 

))P(Y(n)) 
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where the matrix An-1 is based on the parameter set Wrn). It turns out that this 
matrix is triangular with nonvanishing anti-main diagonal entries. To justify this 
statement observe that by Gaussian quadrature 

b n-1 
0 / Pk+n+1 (t)Pi(t)du(t) = E cn)Pk+n+l (Yr )Pi(Yr ()), 

Ja r=o 

for k+n+ 1+1 < 2n- 1. It follows that det(BnD- 1An-1) 7& 0 and consequently 
det Bn 7 0. 

Finally, let us summarize the relationships between the various introduced bases 
for Vn and Wn, respectively. 

Corollary 3.15. Let An and Bn be defined by (3.2) and by (3.4), respectively. 

(a) For a given arbitrary parameter set xrn+) r = 0,1, ... ,n, we have 

kYpn,n J Pn ma 

(;yo) ~~A1(2 = (A"') 
(A~n,n Pn (P~n,n 

(b) For a given parameter set z n) X r = 0.1,... , n - 1, such that Bn is regular, 
we have 

( fn, / / '' 

'V-n,n-in+ 

Y)n,n- 1 P2n / 
( )n =n+ B- BB 1 ( )n 

,on, n-1 P2n o~n,n- 1 

Recall that AnAn and BnBn are the Gram matrices for our scaling functions 
and wavelets, respectively. 

3.2. Two-scale relations and decomposition. In this section we work out the 
relationship between the coefficient vectors a(2n),a(n), and b(n) in the so-called 
two-scale relation 

2n 

f2n(t) - ar 02n (t; X ) 
r=o 
n n-1 

(3.6) a A (n) (' (t; xUn+ 1) ) + E b(n) 'On (t; z$n)) 
r=o r=o 

= fn(t) + gn(t). 

In view of (3.1) and (3.3) the above equation may be rewritten as follows: 

(PO t, ( P2n (t)) A2n a(2n) 

=(PO (t), I ,. Pn (t) ) An a~n +(n+ 1(t), .., P2n (t) ) Bn b (n) I 
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which then implies 

(37) 42n a(2 (An (n) 
A2~~ ~ = 

0 Bn b 

The next theorem shows how to decompose a function from V2n into wavelets 
from Wn and scaling functions from Vn and states how to reverse this process. The 
proof follows directly from (3.7). 

Theorem 3.16. Let the scaling functions 1pn(t; Xn+ ') ), (p2n(t; X (n+l)), the wave- 
lets On(t; Zr$)) and the corresponding matrices An, A2n, Bn are based on arbitrary 
parameter sets. 

(a) (Reconstruction) Let the coefficient vectors a(n) and b(n) in (3.6) be given. 
Then 

a(2n) ~= A2-n (An ?) (b)n 

(b) (Decomposition) Let the coefficient vector a(2n) in (3.6) be given. If Bn is 
regular, then 

(b~n) =( O ? n A2na() b( } B7'} 

As it is not surprising, the above formulae simplify in the orthogonal case. In 
particular, the inversion of matrices can be avoided. Note, however, that the or- 
thogonality of the wavelets is only known for special cases (see Section 5). 

Corollary 3.17. Let the wavelets 'On,r (t) = 'On (t; Zr$ ) and the scaling functions 

pn,r (t) = (On (t; Xr + ) p )02nr (t) = (p2n (t; Xr2+ 1)) be given. 

(a) (Reconstruction) Let the coefficient vectors a(n) and b(n) in (3.6) be given. 
If the S02n,r, r = 0,1,. . , 2n, are orthogonal, then 

(n n-1 

a (2n) -a) (2n+ )) + E (n)] s (X(2n+ 

cp2n,r (Xr s) \= s=o I 
(b) (Decomposition) Let the coefficient vector a(2n) in (3.6) be given. If the SOn,r, 

r = 0, 1, . . . , n, and the ?$n,r, r = 01, ... , n- 1, are orthogonal, then 

2n 

r ((n+1)) E as (Pn,r(Xs ) 
~qn~ (Xr s=0 

- I1 
2n 

b (n) = 1 I)L(2n) n~(X(2 ). 
~ n~r r s=0 

Proof. (a) The orthogonality and (3.6) imply 

(2n) - (fn+gn, CP2n,r) 
ar 

K(P2n,r, (P2n,r) 
n n-1 

1 f 0 X) 2n,r) + A: s 
((p~n~r, (P~nS ((Pnns)) 
('P~~r, P~n~) 's=0 s=0 
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The remaining part follows from the reproducing property of P2nr (cf. (2.11)). 
Part (b) is along the same lines. Here we have 

(n) = (f2n,(Pn,r) and ( = Kf2n l1'nr) 
((Pn,r, (Pn,r) r (nri Onor 

- 

To decompose a given function f one first has to approximate f by a suit- 
able function f2n in V2n. Let us assume that the scaling functions (2nr(t) = 

(p2n (t; Yr2n?1)) are based on the zeros r$2n+1) of P2n+l, i.e., they are orthogonal 

((P2n,r, (P2n,s) = (P2nr (Y (2n+l)) = C(2n+ 1)6rs 

Then the approximation is typically done by an orthogonal projection 
2n (~~ 

f(t) (f, 1P2nr) 
r=0 ~~~(PO2n,r, (~~ 

or by an interpolatory process 

f t) Ef (Y(2n 1) ( (2,r ) 
r=0 (~P2n,r, (P2n~r) 

Actually, if on computes (f, P2nr) by the Gaussian quadrature both approaches 
provide the same approximation. The proof of the next lemma follows directly 
from Corollary 2.6. 

Lemma 3.18. Let Yr2n+l) r = 0,1,... ,2n, denote the zeros of P2,+? and let 

~P2n,r denote the associated scaling functions (2.13). Furthermore, let f denote a 
given smooth function. Then the Gaussian quadrature of f(P2n,r simplifies 

2nI ( i (~n r ~ d C( 2n+l1) ) y(2n+ I p ( ( 2n+l1) ) = f ( (2n+l. (f, (02n,r) Z Y (c)2Th+1))1 - 

s=0 

Let us finish this section with an example. Here we decompose a piecewise 
linear "hat function" f which is zero on [-1, 1] \ (-0.01, 0.01) and one at the origin 
(compare Figure 3.19 (a)). The scaling function spaces V2n and Vn were defined by 
the zeros of P2n+1 and Pn+?, respectively. The wavelet space Wn was defined by the 
zeros of Pn, which ensures that the An r'S constitute a basis. The approximation 
f2n of f in V2n was computed by the above described interpolatory process. 

It is important to note that the underlying numerical computations make use 
of the properties of orthogonal polynomials. In particular, we computed the corre- 
sponding parameter sets as eigenvalues of the associated Jacobi matrix (cf. Lemma 
2.1 (c)) and the resulting polynomials were evaluated by means of their three-term 
recurrence relations (2.5). 

Figure 3.19 shows the decomposition f2n = fn+gn with respect to the Chebyshev 
weight function of the first kind w(t) =(1- t2)-1/2. Whereas Figure 3.20 shows 
the same decomposition but with respect to the modified weight function w(t) = 
t2(1 - t2)-1/2 (explicit expressions for the corresponding orthogonal polynomials 
may be found in Chihara [1, pp. 155]). Here, the time localization is considerably 
improved. 

Some comments are in order. The purpose of the example is to show that the 
choice of the weight function may have quite some affect on the decomposition. 
Here, we designed the given function f such that in both cases the approximation 
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0.5 0.5 

0. 0. 

-0.5 -0.5 
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

(a) (b) 

0.5 0.5 

0. 0. 
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(C) (d) 

FIGURE 3.19. Decomposition with respect to w(t) = (1 t2)-1/2 
for n = 128. (a) Given function: f; (b) projection on V2,: f2,; 

decomposition: (c) fh E Vn; (d) gn E W4 

0.5 0.5 

0. 0 

-0.5 -0.5 
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

(a) (b) 

0.5 0.5 

0 A 0 

-0.5. -0.5 
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 

(c) (d) 

FIGURE 3.20. Decomposition with respect to w(t) = t2(i-t2) 1/2 

for n = 128. (a) Given function: f; (b) projection on V2,: f2,; 

decomposition: (c) f, E Vn; (d) gn E W,. 

f2n consists of only one scaling function, that is, f2, is "maximally localized" with 
respect to the chosen weight function (cf. Theorem 2.3(b)). It is interesting to note 
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that for both weights Yn has a full expansion into wavelets, i.e., b$n) 7 0, r = 

0, 1,.. ,n- I. 

4. STABILITY AND TRANSLATION INVARIANCE 

The above introduced scaling functions and wavelets do not provide a multires- 
olution in the classical sense. However, there are some relationships which will 
be pointed out in this section. To start with, let us mention that we have also a 
sequence of successive approximation spaces, i.e., 

Vo C VI C ... C V2j C V2j,+ C 

Furthermore, from the classical theory of orthogonal polynomials we have 

closL 2 (W) U V2 = L2 (W), 

j=O 

provided that the underlying distribution function has infinitely many points of 
increase. Because we deal with finite dimensional spaces V2j, j > 0, we omit the 
axiom 

The dilation axiom essentially changes into a condition for the frequencies 

fEVn(E=='f, Pk)=0, forall k>n. 

Finally, in the next subsection we discuss in greater detail the fourth axiom of a 
classical multiresolution analysis, namely that the span of all integer translates of 
a given scaling function yields a Riesz basis for the corresponding space. 

4.1. Riesz stability. Here we establish a two-sided estimate between the weighted 
L2-norm llfnll (||gn||) (cf. (2.2)) of an arbitrary function fn E Vn (gn E Wn) and 
the Euclidian norm of the coefficients of fn (an) with respect to the basis of scaling 
functions (wavelets). The Euclidian norm of a vector a(n) E Rn+l is defined as 

usual by la(n)2 (EnL a) 1/2 with corresponding spectral norm IIAH12. 

Theorem 4.21. Let An (cf. (3.2)) and Bn (cf. (3.4)) denote the matrices asso- 
ciated with the parameter sets xVn+l) and z n), respectively. Furthermore, let Spn,r 
and I'n,r denote the corresponding scaling functions and wavelets. 

(a) For fn Zr-=oar) (Pn,r, we have 

I 
I a(n) 112 ?< IffnI < ?lAnlA2 Ila (n)IaI2. 

(b) For gn = En-I bV(n),nor we have 

flgnIl < flBnIH2 lb(n)112, 

and if in addition Bn is regular, then also 

1 Ilb(n) 112 < IlgnI11 
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0.8 - 

0.6- 

0.4 - 

0.2- 

0~~~~~~~~~~~~~~~~~ 

-0.2- 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

FIGURE 4.22. Scaling functions of degree n = 32 with respect to 
the Legendre weight w(t) = 1 and the parameter x(n+l) =-0.2 

(solid line) and x(n+l) = 0.5 (dashed line). 

Proof. By Parseval's equation we obtain for f, C Vn 
n n ~~~2 n 2 

2fn = Za )ZPk(x$(?P))Pk = Za i)Pk(Xzn+l)) 
- 

An a(n) l.2 
r=O k=O k=O r=O 

Now (a) and analogously (b) follow by standard arguments. E 

Hence, as it is not surprising, the Riesz stability can be measured by the spectral 
condition number of An 

_ Aiiix (A4 rAn) 
(4.1) A'1 12 HA 12 - A11r:AnIjA-n) 

and by the spectral condition number of Bn 

(4.2) B' f 1B11 2 2 - A niii (B jBn) 

respectively. Here AjIIix and A,11j1, denote the extreme eigenvalues of the correspond- 
ing matrices. 

4.2. Generalized translation. Usually, in a multiresolution analysis time local- 
ization is realized by taking shifts of one given function. Also, Euler's functional 
equation is used to advantage. Namely, a shift in the time space is equivalent to 
a multiplication by an exponential in the Fourier space. In this section, we briefly 
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0.5 -: 

0 V / / V \ 

-0.5I 

-1 I l l l l l l 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

FIGURE 4.23. Wavelets of degree n 32 with respect to the Le- 
gendre weight w(t) = 1 and the parameter z(n+l) -0.2 (solid 

line) and z(n+I) = 0.5 (dashed line). 

outline how to generalize this concept to the present polynomial approach. Here, 
we restrict ourselves to the Jacobi polynomials P(,0). These polynomials are or- 
thogonal with respect to the weight w(t) = (1 - t)a(1 + t), -1 < t < 1. 

For a given f in this weighted L2-space with Fourier-Jacobi-coefficients 

f (k) = j f (t)P )(t) (I -t) (1 + t) dt 

we consider the operator SA\: L2(w) L2(w), -1 < A < 1 defined by a multipli- 
cation in the frequency domain 

(SAf)^(k) Pka (A) f^(k) 

For -1 <3 < a, <1 a a + A, the operator Sax has the properties (see Gasper [5]) 

lSff 11 < Cllf 11, for all A C (-1, 1), 

and 

lim 1S1f - ffl = 0. 

Hence Sax may be seen as a generalized translation operator. 
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In this context, it is possible to recover our scaling functions and wavelets, re- 
spectively, as generalized translations of a given function. More precisely, with 

n 

fv(t) :=On(t; 1) = iP(O3 )(1 /)(t) 
k=O 

it is straightforward to verify that 

On(.; A) = S Af,. 

Here, we used that 

(P 43 f f ) (1) for 0 < k < n 
0 ~ for k >n. 

Analogously, we have 

V.n(; A) = S,\fw 

with 
2n 

(4.4) fW (t) 'On In(t; 1) = ,Pk(00) P )(t). 

k=n+ I 

We would like to mention that modifications of (4.3) and of (4.4) which at least 
remain suppfer -" {O,. . ., n} and suppfw - = n 1, . ... , 2n}, respectively, do affect 
the algorithms of Section 3 only by the multiplication of An and Bn by certain 
regular diagonal matrices. 

The two figures illustrate, that scaling functions (wavelets) with respect to dif- 
ferent parameters look almost like a shift of each other. 

5. EXAMPLES 

In this section we want to discuss two examples in more detail. Both belong 
to the class of Chebyshev weights, i.e. Jacobi weights with lal = 1I1 = 2. These 2 
weights are of particular interest, because here one can handle the computations 
with the help of fast algorithms based on the Discrete Cosine Transform (see, for 
example Tasche et al. [9], [10], [7]). 

Let us start with the Chebyshev weight of the first kind 

w (t)= t G l1). 

The corresponding orthonormal polynomials, the Chebyshev polynomials of the 
first kind, can conveniently be written 

Pn(t) = a 
fv' cosrt if u>0, 

w)r if nu=O, 

in terms of t = cos 0 0 < 0 < 7r. If we take as parameter set for the scaling 
functions the zeros of Pn+1 (cf. Corollary 2.6) 

(n+1) Cos (2r + 1)wr r = O.... In Y'r =cs2ni 2 rI 0,.. I 

then 

? 2-Scos k(2r + ?1)r SPn,-r W - 2ri Co cos kO 

7 k=O ?2n 



WAVELEErS BASED ON ORrHOGONAL POLYNOMIALS 1615 

and 

An = diag (-2X, 1, 1, . . ., 1) *Cos k(2r + 2)7) 

With the help of trigonometric identities it is easy to see that 

(5.1) A-' n n + 1n 

Following Corollary 3.12 we notice that this is the only situation where Gauss- 
ian quadrature coincides with Chebyshev quadrature (i.e., all weights are equal 
r/(n + 1)). 

Analogously we choose for the wavelets the zeros y$n) of Pn as the set of param- 
eters. Then 

2 2n 
k(2r +1)wr 

nr(t) 2 E cos coskO, r=O,... In-1, 
k7n?1 2n k=n+l 

and 

= t (cos (n+l+k)(2r+1)) n 

- ((-1 )'+ I sin (k+I)(2r+1)r n 

In this case we know from Corollary 3.14 that the wavelets are linear independent. 
However, the following lemma shows that they are not orthogonal to each other 
(compare Corollary 3.13(b)). 

Lemma 5.24. The inverse of Bn is given by 

(5.2) B-l -B diag 1, 1, I 

with 

BnirB (-$kr +? 
or or ~k,r=?,. .. ,n-1. 

Proof. The first assertion is equivalent to 

6rms ?2 /(n-)r1 s sin (k + 1)(2r + 1)r sin (k + 1)(2s + 1)7r n 
sin 

2n 
sn 

2n 
k=O 

where the prime indicates that the last term in the sum has to be divided by 2. 
Having performed an index shift, we obtain for the right-hand side by the addition 
formula 

-(-r~s Ecos 
n 

k(r-s)7r cos k(r + s + 1)7r 
n n n 

k=l 

The rest of the proof is just an application of the well-known summation formula 
for Dirichlet kernels 

(5.3) 2?+ .ocosn{ if Cs2n-1 

The second statement follows directly from the first one. 
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We conclude this example with the computation of the Riesz stability constants 
(cf. (4.1), (4.2)). With (5.1) we obtain the best possible bounds for the scaling 
functions 

JJA-112flAnIJ2 1, 

whereas for the wavelets we deduce from (5.2) that 

IBj-I 112 ||Bn h2 = - 

Let us now consider as a second example the Chebyshev weight of the second 
kind, i.e., 

W (t) = IJ _ t 2 C (-1 1) 

and the corresponding orthonormal polynomials 

P (t) 2 +/tsin(n + 1)0 
wn() 7 sinO0 

Again we take as parameter set for the scaling functions the zeros of Pn+i, i.e., 

(n+ 1) (r?+1)wr 
Yrnl 

= Cos( )X r =O...,n. 
n+2 

This choice leads to 

2 n sin (k? rzq-r1)7 sin(k + 1)0 
t 

r k=O sin (r+1)7r sin 0 sin0 n+2 

and 

(sink? l \ An ~ 1 (r+i7r) 
(\Ain +2 ) k,r=O,...,n 

For completeness we mention the result on the Gaussian quadrature 

(5.4) ArAn -dia( n +2 (5 4) An An = dia ( 
7r sin2 (rr+i)7r) wsn n+2 /=,., 

Choosing the zeros yrn) of Pn as the set of parameters for the wavelets we obtain 

22n si (k?1)(r+1)7sinr ) 

*nir kni (rE--1> sin r=O,... ,n- 1, 

and 

(k 
n- 

2(r+i)i 

r 
_ _ _ _ _ (in sin +2)(r+l) ) 

The next lemma shows that this time we have an orthogonal set of wavelets. 

Lemma 5.25. For the above defined matrix Bn we have 

(5.5) B'Bn diag ( i +1 

n+1 
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Proof. The (r, s) element of BnB, looks like 

2n-1 sin (k+n+2)(r+1) sin (k+n+2)(s+ 1>)r 
n+1 n+1 

7=( sin n sin +17 k= n+1n1 

It may be simplified to 

(r+1)ir s (1r - )7r sk(r + s + 2)7r 7rsin s in( )7,En-t ni- + 
n+1 rn?1k= 

Now the statement follows from (5.3). D 

Again, we finish by computing the quotient for the Riesz bounds. Here, we 
obtain from (5.4) that 

-1A['f~ l ={~fsin- 1% for even n, 
n 

I~1sin- 2n4for odd n, 

and from (5.5) that 

[sin-1 B7r for odd n, 
n ~~1sin- 17r for even n. 

Let us summarize these two examples. We have constructed for the Chebyshev 
weight of the first kind orthogonal scaling functions and nonorthogonal wavelets 
where the quotient of the associated Riesz bounds are uniformly bounded. On 
the other hand, for the Chebyshev weight of the second kind we constructed both 
orthogonal scaling functions and orthogonal wavelets where the quotient of the 
Riesz constants are growing linearly in n. 
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